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SYNTHETIC DATASET GENERATION FOR OBJECT-TO-MODEL
DEEP LEARNING IN INDUSTRIAL APPLICATIONS

• - Availability of large image datasets has been crucial for the success 
of deep learning-based classification and detection methods.

• - Everyday object datasets are widely available, but specific industrial 
use-case datasets (e.g., identifying packaged products in a 
warehouse) are scarce.

• - In these industrial cases, datasets need to be created from scratch, 
which becomes a bottleneck for deploying deep learning techniques 
in industrial applications.



3D Modelling in Deep Learning

• 3D modeling has been traditionally used in computer vision research and is now being 
considered for deep learning-based image classification and object detection.

• Researchers have used 3D models in conjunction with CNNs to train networks for real 
image applications.

• Su et. al. [1] demonstrated the use of 3D models for viewpoint estimation by creating a 
database of rendered training images using CAD models, outperforming state-of-the-art 
methods on real image test sets.

• Peng et. al. [2] and Sakar et. al. [3] utilized a large number of 3D CAD models to render 
realistic training images and trained classifiers for classifying real-world images of the 
objects.

• Temblay et. al. [4] expanded on this approach by applying synthetic data generated from 
3D CAD models to object detection. They employed domain randomization, varying 
parameters like lighting, pose, and object textures, and trained an object detection 
network on automatically generated non-photorealistic synthetic data.

• Wong et. al. proposed the method that use a synthetic dataset generated using 
photogrammetry techniques on real-world objects, consisting of 100k synthetic images. 
Training an InceptionV3 CNN on this dataset achieved 95.8% classification accuracy on 
real supermarket product images, and a one-stage RetinaNet detector trained on the 
synthetic, annotated images accurately localized and classified the products in real-time.



Standard Pipeline Design vs Custom Pipeline Design

https://doi.org/10.7717/peerj-cs.222

https://doi.org/10.7717/peerj-cs.222


Image Rendering

https://doi.org/10.7717/peerj-cs.222

https://doi.org/10.7717/peerj-cs.222
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Digital Twin based model of a “Pick and Place”
robotic process based on the rotation 
classification pipeline

https://doi.org/10.1016/j.procir.2021.10.038

Procedia CIRP

Volume 103, 2021, Pages 237-242

https://doi.org/10.1016/j.procir.2021.10.038


Vision-based system for automated image 
dataset labelling and dimension 
measurements on shop floor

https://doi.org/10.1016/j.measurement.2023.112980

Measurement

Volume 216, July 2023, 112980
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Vision-based system for automated image 
dataset labelling and dimension 
measurements on shop floor
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Fig. 5. Manufactured component images; (a) images directly 
acquired in the shop floor environment, (b) images acquired 
using the developed system.



Vision-based system for automated image 
dataset labelling and dimension 
measurements on shop floor

https://doi.org/10.1016/j.measurement.2023.112980

Measurement
Volume 216, July 2023, 112980

Fig. 5. Manufactured component images; (a) images directly 
acquired in the shop floor environment, (b) images acquired 
using the developed system.



Vision-based system for automated image 
dataset labelling and dimension 
measurements on shop floor
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Generating Synthetic Data To Solve Industrial 
Control Problems By Modeling A Belt 
Conveyor

https://doi.org/10.1016/j.procs.2022.11.010 Procedia Computer Science

Volume 212, 2022, Pages 264-274



Image-Bot: Generating Synthetic Object Detection 
Datasets for Small and Medium-Sized 
Manufacturing Companies

https://doi.org/10.1016/j.procir.2022.05.004 Procedia CIRP

Volume 107, 2022, Pages 434-439

https://doi.org/10.1016/j.procir.2022.05.004


Proposed methodology
• Use of Generative AI (Stable Diffusion) to eliminate the problem of 

the scarcity of specific industrial use-case datasets. 
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Proposed methodology
• With AI generated specific industrial use-case datasets, we fine tuned 

a pretrained distilled ViT large model to specific conditions
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Synthetic dataset generation using 
Generative AI



Stable Diffusion



SAM + Stable diffusion

https://www.comet.com/site/blog/sam-stable-diffusion-for-
text-to-image-inpainting/



https://www.comet.com/site/blog/sam-stable-diffusion-for-
text-to-image-inpainting/
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Generative inpainting



AI Generated images with no additional condition
compared with real images
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AI Generated images with dirt/defect conditions
compared with real images
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Learning from Synthetic Dataset 
using Knowledge distillation 





DINO, an acronym for DIstillation of knowledge with 

NO labels

• DINOv2 combines elements from DINOv1 and iBOT for improved 

performance.

• Image-level objective: It uses a teacher network and a student 

network with the same architecture but different parameters.

• The student network is trained using knowledge distillation to 

mimic the output of the teacher network.

• In the first stage of training, global and local views of lower 

resolution are generated.

• The student network learns local to global correspondences by 

using all views as input while only the global views are used for 

the teacher network.

• The student network is optimized using Stochastic Gradient 

Descent (SGD) to precisely copy the teacher network.



Knowledge Distillation approach, DINOv2 does not use a pre-existing teacher network. Instead, a self-

supervised learning method is employed in which the teacher network is constructed from previous 

iterations of the student network using an exponential moving average (EMA).

https://blog.marvik.ai/2023/05/16/dinov2-exploring-self-

supervised-vision-transformers/



https://ai.googleblog.com/2023/03/scaling-vision-

transformers-to-22.html
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Conclusion

• We have achieved a remarkable feat by showcasing the remarkable capabilities of 

Generative AI in synthesizing highly targeted datasets for specific industrial use-

cases. Through the application of this innovative technique, we have effectively 

addressed the long-standing challenge of limited availability and scarcity of 

industrial datasets within the factory environment.

• The Pretrained distilled ViT foundation model serves as an exceptional starting 

point, as it possesses a comprehensive understanding of various visual features 

and patterns. This pre-existing knowledge allows us to accelerate the fine-tuning 

process and optimize the model's performance for detecting and classifying rare 

industrial defects or contamination instances.



Thank you

Associate Prof. Dr. Siridech Boonsang

Dean, School of Information Technology, KMITL





Knowledge distillation.



Ensemble. 



MYSTERY 2: KNOWLEDGE DISTILLATION.



Mystery 2: Knowledge distillation.

- Ensemble models improve test-time performance but become 10 times 

slower during inference due to the need to compute outputs from multiple 

neural networks.

- Knowledge distillation is a technique proposed to address this issue by 

training another individual model to match the output of the ensemble.

- Knowledge distillation involves matching the ensemble's output, also 

known as "dark knowledge," which may include probabilities for multiple 

classes, with the true training label.



Mystery 2: Knowledge distillation.

- The individual model trained through knowledge distillation can achieve similar 

test-time performance as the larger ensemble.

- Matching the outputs of the ensemble during knowledge distillation leads to better 

test accuracy compared to matching the true labels, although the reasons for this 

improvement are not fully understood.

- It is possible to perform ensemble learning over the models trained through 

knowledge distillation to further enhance test accuracy.



MYSTERY 2: KNOWLEDGE DISTILLATION.

 knowledge distillationwas proposed to address a problem with ensemble models in deep learning.

 Ensemble models are made up of multiple individual models that work together to make predictions. However, these models can be 

computationally expensive and difficult to train.

 Knowledge distillation involves training another individual model to match the output of the ensemble. This model is often called the student 

model, while the ensemble is called the teacher model.

 The output of the ensemble on a given input (such as an image of a cat) is sometimes referred to as the dark knowledge. This output may 

include probabilities for different classes, such as "80% cat + 10% dog + 10% car."

 The true training label for the input is known, such as "100% cat." The goal of knowledge distillation is to train the student model to match 

the dark knowledge output as closely as possible, while still predicting the correct label.

 The student model can be much smaller and faster than the ensemble, but still achieve similar performance at test time. This is because it 

has learned to mimic the behavior of the ensemble, which has already learned to recognize patterns in the data.

 Overall, knowledge distillation is a useful technique for reducing the computational cost of ensemble models, while still maintaining their 

accuracy.



MYSTERY 3: SELF-DISTILLATION.

 The concept of knowledge distillation is introduced, which involves using a teacher ensemble model to improve the performance of a student individual 
model.

 The teacher ensemble model has a test accuracy of 84.8%, which means that the student individual model can achieve 83.8% accuracy by learning 
from it.

 The phenomenon of self-distillation is then introduced, which involves using an individual model of the same architecture as the teacher to improve its 
own performance.

 This is surprising because if an individual model only achieves 81.5% test accuracy, it is not clear how using the same model as a teacher can 
consistently boost the accuracy to 83.5%.

 The image in Figure 2 provides a visual representation of this process, which involves training the same model again using itself as the teacher.

 The concept of self-distillation is important because it provides a way to improve the performance of individual models without relying on an external 
teacher ensemble model.

 This is particularly useful in scenarios where it may not be feasible to use a teacher ensemble model, such as in resource-constrained environments.

 The mystery of how self-distillation works is still not fully understood, and further research is needed to uncover the underlying mechanisms behind this 
phenomenon.



Vision Transformer

- The input image is divided into patches of size P×P.

- Each patch is flattened and transformed into a D-dimensional vector.

- Position embeddings from the original transformer and class tokens are added to 

the patch embeddings.

- The position is represented as a single number instead of a 2D position embedding 

based on x, y positions.

- The patches are converted into tokens.

- The token input is treated the same as regular NLP tasks.

- No modifications are made to the encoder transformer model.



https://purnasaigudikandula.medium.com/dinov2-image-

classification-visualization-and-paper-review-745bee52c826
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