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SYNTHETIC DATASET GENERATION FOR OBJECT-TO-MODEL ~ FIGHT
DEEP LEARNING IN INDUSTRIAL APPLICATIONS

>

- Availability of large image datasets has been crucial for the success
of deep learning-based classification and detection methods.

- Everyday object datasets are widely available, but specific industrial
use-case datasets (e.g., identifying packaged products in a
warehouse) are scarce.

- In these mdustrlal cases, datasets need to be created from scratch
WhICh becomesa’ , -

in industrial appllcs‘ﬁ o
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. 3D Modelling in Deep Learning

3D modeling has been traditionally used in computer vision research and is now being
considered for deep learning-based image classification and object detection.

e Researchers have used 3D models in conjunction with CNNs to train networks for real
image applications.

e Su et. al. [111 demonstrated the use of 3D models for viewpoint estimation by creating a
database of rendered training images using CAD models, outperforming state-of-the-art
methods on real image test sets.

* Peng et. al. [2] and Sakar et. al. [3] utilized a large number of 3D CAD models to render
rebqlistic training images and trained classifiers for classifying real-world images of the
objects.

 Temblay et. al. [4] expanded on this approach by applying synthetic data generated from
3D CAD models to object detection. They employed domain randomization, varying
parameters like lighting, pose, and object textures, and trained an object detection
network on automatically generated non-photorealistic synthetic data.

* Wong et. al. proposed the method that use a synthetic dataset generated using

photogrammetry techniques on real-world objects, consisting of 100k synthetic images. A

Training an InceptionV3 CNN on this dataset achieved 95.8% classification accuracy on

real supermarket product images, and a one-stage RetinaNet detector trained on the Y
nthetic, annotated images accurately localized and classified the products in reaktime.

T .Team Spirit
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 Standard Pipeline Design vs Custom Pipeline Design

High
Quality
Dataset

Physical
Products

ACCEPTED FOR PUBLICATION IN PEER] COMPUTER SCIENCE - SEPTEMBER 2019 https://doi.org/10.7717/peerj-cs.222
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Neural
Network
Data | Data |
Generation Processing
(3D (Image
Modelling) Rendering)
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Testing and
Evaluation

Accurate
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Neural
Network

Testing and
Evaluation
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Accurate
Classifier
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Synthetic training data

|

. | Random pose, lighting,
Database of scenes / and occlusion information

randomly - generated scenes https://doi.org/10.7717/peerj—cs.222
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Coconut
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Digital Twin based model of a “Pick and Place”
robotic process based on the rotation

classificatiGh pipelin

olume 1 ages 237-242
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algorithm with camera

systems
Robotic
command <—— Rotation prediction
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| Camera
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b Digital Twin of the Robotic Arm
- -

Fig. 1: Digital Twin-based implementation of the proposed synthetic-data
based model

“1g. 2: Axes on part (1)

Fig. 3: Local and Global Coordinate Systems

https://doi.org/10.1016/j.procir.2021.10.038
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" Vision-based system for automated image .. e
 dataset labelling and dimension

measurements on sh
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Captured Images

O &L

Requirement Limitation Solution
* Good quality image dataset * Ambient Illumination « Stand alone and robust image
+ Surrounding noise acquisition system

* Unwanted objecls

Measurement
me 216, July 2023, 112980 https://doi.org/10.1016/j.measurement.2023.112980
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Vision-based system for automated image ..

dataset labelling and dimension

measitremantc nn chan flnar

Display —

Processing
Unit
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Processing Unit
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Measurement
Volume 216, July 2023, 112980

https://doi.org/10.1016/j.measurement.2023.112980
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 dataset labelling and dimension
measurements on shoo floor

Reflection Shadow Reflection Reflection Blind Spot Blind Spot]| Reflection
(a)

L Shadow Reflection
(
(b) . .

Fig. 5. Manufactured component images; (a) images directly
acquired in the shop floor environment, (b) images acquired
using the developed system.

Measurement
me 216, July 2023, 112980 https://doi.org/10.1016/j.measurement.2023.112980
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" Vision-based system for automated image .. o e
 dataset labelling and dimension

measurements on shop floor

Reflection  Shadow Reflection RcﬂoclionShadoW Blind P eftection] B4 SPOY Reflection | M ———7—"
Normalization §
(a) ( 3 | | Similarity Index
Reference Image > - !
Image Size | 4
Calculation E Comparative
Input Images —— f Analysis
' . I . Manhattan !
(b) p— Distance i
- Calculation J
Fig. 5. Manufactured component images; (a) images directly
acquired in the shop floor environment, (b) images acquired
using the developed system.
A
Measurement
Volume 216, July 2023, 112980 https://doi.org/10.1016/j.measurement.2023.112980
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" Vision-based system for automated image .. it
 dataset labelling and dimension

measurements on shop floor

Capture ieval
P = | Savelmage | == Retrieva afld - Image .
Image Pre-processing Augmentation
: * Manual selection * Batch wise retrieval v Tt

* Using GUI of path and labels of the images X Hom(-lon

« Format selection - « Extraction of ROI 8 j;)]pxrig

JPEG, PNG, TIFF, «  Color transformation DERIS

2 ; *  Translation

PG * Image resize

Measurement
Volume 216, July 2023, 112980 https://doi.org/10.1016/j.measurement.2023.112980 A
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" Generating Synthetic Data To Solve Industrial it
' Control Problems By Modeling A Belt

I

Fig. 3. Interface of the industrial belt ¢ r model module Fig. 4. Example of synthetic image with bolts ‘

https://doi.org/10.1016/j.procs.2022.11.010  Procedia Computer Science E
e Volume 212, 2022, Pages 264-274 - AN w o
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> Image-Bot: Generating Synthetic Object Detectionjcy

' Datasets for Small and Medium-Sized

NMAannifarkiirina CAnmANRANITAC

o

Raw Image Mask Foreground

|

Fig. 2. Physical setup to capture and process the images (personal computer is
. not on the picture).

—

Bacl;gl‘(;lllld Result: éomposite Image

Fig. 1. Image masking and blending to insert a foreground image into a ""ﬂ"*

E & £ = = - Y
background image (background image from [20]). n - . . n .

. Fig. 6. Samples from the ted dataset (synthetic
https://doi.org/10.1016/j.procir.2022.05.004 Procedia CIRP A E
Volume 107, 2022, Pages 434-439 P v o
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Proposed methodology

* Use of Generative Al (Stable Diffusion) to eliminate the problem of
the scarcity of specific industrial use-case datasets.

I(IMITl

KMITL

__-"
=
—
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Al generated images
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~ Proposed methodology

* With Al generated specific industrial use-case datasets, we fine tuned
a pretrained distilled ViT large model to specific conditions

Fine tuning on Product
classes:

1.Bolt
2.S5crew
3.Bolt
with

Pretrained
distilled ViT

foundation
model

defect

Captured images Al generated images
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Captured image from real industrial environment

Screw

Bolt




Generative Inpainting
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Al Generated images with no additional condition
compared with real images

Screw

Bolt

Real Al Generated



Al Generated images with dirt/defect conditions

compared with real images
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DINO, an acronym for DlIstillation of knowledge with = FIGHT

NO l|abels

®* DINOv2 combines elements from DINOv1 and iBOT for improved

performance. loss:
N 0 -p2log pi e
®* Image-level objective: It uses a teacher network and a student
network with the same architecture but different parameters. -
softmax softmax
®* The student network is trained using knowledge distillation to CEmLﬂng
mimic the output of the teacher network. ,
® In the first stage of training, global and local views of lower student gg = teacher gg,
resolution are generated.
®* The student network learns local to global correspondences by e e
using all views as input while only the global views are used for e
the teacher network.
®* The student network is optimized using Stochastic Gradient A
Descent (SGD) to precisely copy the teacher network. Y



EMA -p‘ LOG P

Knowledge Distillation approach, DINOv2 does not use a pre-existing teacher network. Instead, a self-
supervised learning method is employed in which the teacher network is constructed from previous
iterations of the student network using an exponential moving average (EMA).

https://blog.marvik.ai/2023/05/16/dinov2-exploring-self-
supervised-vision-transformers/



Pretrained models

# of ImageNet ImageNet
model .
params k-NN linear
ViT-S/14 distilled 21 M 79.0% 81.1%
ViT-B/14 distilled 86 M 82.1% 84.5%
ViT-L/14 distilled 300 M 83.5% 86.3%
| 70% 1
ViT-g/14 1,100 M 83.5% 86.5%
S
Q
=
= 60% A
Q
<
= 50% 1
Z
>
= 40% A
O
30% -

7’
” fine-tune
7’

B/16
L/16 y

® i

g/14 % g
G/14 g
e/14 / ’/
22B / ,’
g A
-

Vi

https://ai.googleblog.com/2023/03/scaling-vision-
transformers-to-22.html
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' Conclusion

®* We have achieved a remarkable feat by showcasing the remarkable capabilities of
Generative Al in synthesizing highly targeted datasets for specific industrial use-
cases. Through the application of this innovative technique, we have effectively
addressed the long-standing challenge of limited availability and scarcity of
industrial datasets within the factory environment.

®* The Pretrained distilled ViT foundation model serves as an exceptional starting
point, as it possesses a comprehensive understanding of various visual features
and patterns. This pre-existing knowledge allows us to accelerate the fine-tuning
process and optimize the model's performance for detecting and classifying rare
industrial defects or contamination instances.




Thank you

Associate Prof. Dr. Siridech Boonsang

Dean, School of Information Technology, KMITL
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CIFAR-100 dataset

Perhaps most surprisingly,
train a single model to “match” the output of a single model
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Where does this
performance boost
come from?

test accuracy 83.56%
(self-distillation) __




train the same WideResNet-28-10 architecture with 10 different random seeds
but same learning rate, same weight decay, same Ir schedule, same momentum, same batch size...

train (F; + -+ F;)/10 altogether with
different seeds = no performance boost

unweighted | + 1
= average S

|
' train Fy, ..., F; separately and
/ take average = performance boost

CIFAR-100 dataset
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(mystery 1)
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- Ensemble models improve test-time performance but become 10 times
slower during inference due to the need to compute outputs from multiple
neural networks.

- Knowledge distillation is a technigue proposed to address this issue by
training another individual model to match the output of the ensemble.

- Knowledge distillation involves matching the ensemble's output, also
known as "dark knowledge,” which may include probabilities for multiple
classes, with the true training label.



- The individual model trained through knowledge distillation can achieve similar
test-time performance as the larger ensemble.

- Matching the outputs of the ensemble during knowledge distillation leads to better
test accuracy compared to matching the true labels, although the reasons for this
improvement are not fully understood.

- It is possible to perform ensemble learning over the models trained through
knowledge distillation to further enhance test accuracy.



MYSTERY 2: KNOWLEDGE DISTILLATION.

= Kknowledge distillationwas proposed to address a problem with ensemble models in deep learning.

= Ensemble models are made up of multiple individual models that work together to make predictions. However, these models can be
computationally expensive and difficult to train.

= Knowledge distillation involves training another individual model to match the output of the ensemble. This model is often called the student
model, while the ensemble is called the teacher model.

= The output of the ensemble on a given input (such as an image of a cat) is sometimes referred to as the dark knowledge. This output may
include probabilities for different classes, such as "80% cat + 10% dog + 10% car."

= The true training label for the input is known, such as "100% cat." The goal of knowledge distillation is to train the student model to match
the dark knowledge output as closely as possible, while still predicting the correct label.

= The student model can be much smaller and faster than the ensemble, but still achieve similar performance at test time. This is because it
has learned to mimic the behavior of the ensemble, which has already learned to recognize patterns in the data.

= Qverall, knowledge distillation is a useful technique for reducing the computational cost of ensemble models, while still maintaining their
accuracy.



MYSTERY 3: SELF-DISTILLATION.

= The concept of knowledge distillation is introduced, which involves using a teacher ensemble model to improve the performance of a student individual
model.

= The teacher ensemble model has a test accuracy of 84.8%, which means that the student individual model can achieve 83.8% accuracy by learning
from it.

= The phenomenon of self-distillation is then introduced, which involves using an individual model of the same architecture as the teacher to improve its
own performance.

= This is surprising because if an individual model only achieves 81.5% test accuracy, it is not clear how using the same model as a teacher can
consistently boost the accuracy to 83.5%.

= The image in Figure 2 provides a visual representation of this process, which involves training the same model again using itself as the teacher.

= The concept of self-distillation is important because it provides a way to improve the performance of individual models without relying on an external
teacher ensemble model.

= This is particularly useful in scenarios where it may not be feasible to use a teacher ensemble model, such as in resource-constrained environments.

= The mystery of how self-distillation works is still not fully understood, and further research is needed to uncover the underlying mechanisms behind this
phenomenon.
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Vision Transformer

- The input image is divided into patches of size PH
- Each patch is flattened and transformed into a D-dimensional vector.

- Position embeddings from the original transformer and class tokens are added to
the patch embeddings.

- The position is represented as a single number instead of a 2D position embedding
based on X, y positions.

- The patches are converted into tokens.
- The token input is treated the same as regular NLP tasks.

- No modifications are made to the encoder transformer model.
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https://purnasaigudikandula.medium.com/dinov2-image-
classification-visualization-and-paper-review-745bee52¢c826
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